Call Us on +91 8790661266

Courses Details

Data Analytics

Course Details

HADOOP ONLINE TRAINING COURSE CONTENT

MAP REDUCE

  • Map Reduce Architecture
  • Map Reduce Programing Model
  • Map Reduce Program structure
  • Hadoop streaming
  • Executing Java – Map Reduce Job
  • Understanding of Java Map Reduce Classes
  • Configuration
  • Path
  • Job
  • Mapper
  • Reducer
  • Text
  • Intwritables
  • Long writables
  • File Input Format
  • File Output Format
  • Generic Options Pavser

Joining Datasets in Map Reduce Jobs

  • Map Joins
  • reduce Joins

Combiners Partitioners

  • Python Map Reduce
  • Unit Testing Mapeduce Jobs
  • Hadoop Pipelining
  • Creating Input and Output Formats in Map Reduce Jobs
  • Text Input Format
  • Key Value Input Format
  • Sequence File Input Format
  • Data Localization in Map Reduce
  • Examples

 

HIVE

  • Introduction
  • Hive Architecture
  • Hive Metastore
  • Hive Query Launguage
  • Difference between HQL and SQL
  • Hive Built in Functions
  • Hive UDF (user defined functions)
  • Hive UDAF (user defined Aggregated functions)
  • Hive UDTF (user defined table Generated functions)
  • Hive Serde?
  • Hive & Hbase Integration
  • Hive Working with unstructured data
  • Hive Working With Xml Data
  • Hive Working With Json Data
  • Hive Working With Urls And Weblog Data
  • Hive – Json – Serde
  • Loading Data From Local Files To Hive Tables
  • Loading Data From Hdfs Files To Hive Tables
  • Tables Types
  • Inner Tables
  • External Tables
  • Partitioned Tables
  • Non – Partitioned Tables
  • Dynamic Partitions In Hive
  • Concept Of Bucketing
  • Hive Views
  • Hive Unions
  • Hive Joins
  • Multi Table / File Inserts
  • Inserting Into Local Files
  • Inserting Into Hdfs Files
  • Array Operations In Hive

 

Map (Associative Arrays) Operations in Hive

  • Hive UDF by Java
  • Hive UDF by Python

 

PIG

  • Introduction to pig
  • Pig Latin Script
  • Pig Console / Grunt Shell
  • Execting Pig Latin Script
  • Pig Relations, Bags, Tuples, Fields
  • Data Types
  • Nulls
  • Constants
  • Expressions
  • Schemas
  • Parameter Substitution
  • Arithmetic Operators
  • Comparison Operators
  • Null Operators
  • Boolean Operators
  • Defence Operators
  • Sign Operators
  • Flatten Operators
  • Caster Operators

 

Relational Operators in Pig

  • ICOGROUP
  • CROSS
  • DISTINCT
  • FILTER
  • FOREACH
  • GROUP
  • JOIN (INNER)
  • JOIN (OUTER)
  • LIMIT
  • LOAD
  • ORDER
  • SAMPLE
  • SPILT
  • STORE
  • UNION

Diagnostic Operators in Pig

  • Describe
  • Dump
  • Explain
  • Illustrate

Eval Functions in Pig

  • AVG
  • CONCAT
  • COUNT
  • CONI-STAR
  • DIFF
  • IS EMPTY
  • MAX
  • MIN
  • SIZE
  • SUM
  • TOKENIZE
  • writing Custom UDFS in Pig
  • Using Java
  • Using Python

SQOOP (SQL + HADOOP)

  • Introduction to Sqoop
  • SQOOP Import
  • SQOOP Export
  • Importing Data From RDBMS to HDFS
  • Importing Data From RDBMS to HIVE
  • Importing Data From RDBMS to HBASE
  • Exporting From HASE to RDBMS
  • Exporting From HBASE to RDBMS
  • Exporting From HIVE to RDBMS
  • Exporting From HDFS to RDBMS
  • Transformations While Importing / Exporting
  • Defining SQOOP Jobs

NOSQL

  • What is “Not only SQL”
  • NOSQL Advantages
  • What is problem with RDBMS for Large
  • Data Scaling Systems
  • Types of NOSQL & Purposes
  • Key Value Store
  • Columer Store
  • Document Store
  • Graph Store
  • Introduction to ricsk – NOSQL Database
  • Introduction to cassandra – NOSQL Database
  • Introduction to MangoDB and CouchDB Database
  • Introduction to Neo4j – NOSQL Database
  • Intergration of NOSQL Databases with Hadoop

 

HBASE

  • Introduction to big table
  • What is NOSQL and colummer store Database
  • HBASE Introduction
  • Hbase use cases
  • Hbase basics
  • Column families
  • Scans
  • Hbase Architecture
  • Clients
  • Rest
  • Thrift
  • Java
  • Hive
  • Map Reduce Integration
  • Map Reduce Over Hbase
  • Hbase data Modeling
  • Hbase Schema design
  • Hbase CRUD operators
  • Hive & Hbase interagation
  • Hbase storage handles

OOZIE

  • Introduction to OOZIE
  • OOZIE as a seheduler
  • OOZIE as a Workflow designer
  • Seheduling jobs (OOZIE CODE)
  • Defining Dependences between jobs
  • (OOZIE Code Examples)
  • Conditionally controling jobs
  • (OOZIE Code Examples)
  • Defining parallel jobs (OOZIE Code Examples)

FLUME

  • Introduction to FLUME
  • What is the streaming File
  • FLUME Architecture
  • FLUME Nodes & FLUME Manager
  • FLUME Local & Physical Node
  • FLUME Agents & FLUME Collector

ZOOKIPER

  • Introduction to ZOOKEEPER
  • ZOOKEEPER Architecture
  • Controlling Connection of Distbrited Apps
  • HBASE & ZOOKEEPER
  • Flume & ZOOKEEPER
  • A Sample Code

Free On Hadoop Course

  • Phyton & Pydoop
  • Mongo DB
  • Cascading

Study Options
Batch Type Duration mode OF Training track
week days 30 hrs Class room/Online Fast Track/Normal
week ends 30 hrs Class room/Online Fast Track/Normal

Course Features

Instructor-led Sessions.

Real Time Case Studies

Assignments

24 x 7 Expert Support

Entry Requirment

WHO SHOULD LEARN HADOOP?

Experienced working professionals , Project managers.

Programming Developers and System Administrators.

Graduates, undergraduates eager to learn the latest Big Data technology can take this Big Data Hadoop Certification online training

business intelligence

data analytics professionals